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High interference-immunity and resolution are obtained for an explicit projec- 
tion identification algorithm that is realized easily on an electronic comput- 
er. 

Many physical phenomena and technical objects are modeled by partial differential equa- 
tions. These models describe the evolution of systems in time and their distributivity in 
space. It is customary to call such systems systems with distributed parameters (SDP). Fol- 
lowing [i], SDP models can be considered as "input-output" type models where a perturbing 
system of functions (heat source distribution, heating rods or a force, a perturbing fluctua- 
tion) with initial and boundary conditions is the input and the output function of a system 
(temperature distribution in a heated rod or displacement of a vibrating body) is the output. 
Therefore, the model connects the input to the output function by means of a system opera- 
tion which is a partial differential operator. The output function depends on both the in- 
put function and on its internal parameters that enter into the system operator in the form 
of factors (for instance, the heat conduction coefficient or the rate of vibration propaga- 
tion). 

Ordinarily not all the internal parameters are given in a real system. Consequently, 
unknown parmeters must be estimated for its simulation, diagnostics, optimization, or con- 
trol, i.e., parametric identification of the system must be performed. A given system input 
and the output observable with errors are usually the initial data for the SDP identifica- 
tion problem. Starting from physical laws and operating conditions, the structure of a 
mathematical model of the SDP is postulated here to the accuracy of the unknown internal 
parameters. 

Existing methods of parametric SDP identification can be separated into explicit and 
implicit [2]. Explicit methods are associated with minimization of the quality criterion 
from the residual of the equation (the residual in the input) dependent explicitly on the 
parameters being estimated. When using implicit identification methods the quality crite- 
rion is constructed according to the output residual which depends implicitly on the unknown 
parameters. Explicitly SDP parametric identification algorithms are easily realizable on a 
minicomputer; however, they are too unstable relative to small deviations from the initial 
data. Implicit algorithms possess high interference-immunity but their numerical realiza- 
tion is sufficiently tedious because of the need for a multiple solution of partial differ- 
ential equation [3]. In this connection there is a need to synthesize new or to perfect 
known explicit SDP identification algorithms that possess higher interference-immunity 
than the existing ones. 

It turns out that explicit algorithms of projection type satisfy these requirements. 
The difference between the proposed projection algorithm and those known is that in order 
to minimize the residual in the input it is projected on a subspace of piecewise-constant 
functions rather than on an arbitrary finite-dimensional projection subspace. It is proved 
in [2] that such a subspace filters out random errors present in the observable output. How- 
ever, selection is possible even among subspaces generated by piecewise-constant functions. 

The purpose of the paper is the selection and investigation of a projection subspace 
generated by a system of piecewise-constant Walsh functions that possesses the highest fil- 
tering properties and thereby increasing interference-immunity of the identification algo- 
rithm. 
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FORMULATION OF THE PROBLEM 

Considered are SDP simulatable by nonlinear second-order partial differential equa- 
tions 

N 

~%~[D~u(x, 0] = f(x, 0, (1)  
n ~  1 

{ Oz --'02 OZ , 0 , 0 , /} (,'= 1, 6)are partial differ- 
where x C A = [ x 0 ,  x~]; t C A = [ t 0 ,  tA]; D~C Ot 2 ' Oxc)t Ox 2 Ot Ox 

e n t i a l  o p e r a t o r s  t h a t  d e s c r i b e  t h e  s y s t e m  b e h a v i o r ,  w h e r e  I i s  t h e  i d e n t i t y  o p e r a t o r .  I n i -  
t i a l  and bounda ry  c o n d i t i o n s  a r e  appended  t o  t h e  e q u a t i o n  f o r  i t s  u n i q u e  r e s o l u t i o n  r e l a t i v e  
to u(x, t). 

It is assumed that the observable output function u(x, t) is measured at discrete 
points {xm}iM6A, {Ii~}~6A and distorted by a certain additive ergodic random function s(x, t) 
that has zero mean and a covariational function absolutely integrable in the domain A • A, 
i.e., 

u ~  = u' (x~, t,+) = .*  (x~, t,+) + ~ ,  E { ~ }  -- 0, ~,~, = ~(x~,  f~), ( 2 )  

where u* ( x  m, t k )  i s  a n  e x a c t ,  bu t  Unknown, o u t p u t  f u n c t i o n ,  E{.} i s  t h e  symbol f o r  mathema- 
t i c a l  expectation. It is also assumed that values of the output function are measured on 
the boundaries of the interval A. Let a certain continuous function ~(x, t) that interpo- 
lates {Umk' } with negligible systematic interpolation error correspond to measurable values 

of {Umk' }. 

The problem is to estimate the unknown components {On} of the vector 0 by means of the 
measurements (2). We shall later assume that all N components of the vector 0 must be esti- 
mates. 

CONSTRUCTION OFTHE EXPLICITY PROJECTION 
IDENTIFICATION ALGORITHM 

According to [2], the algorithm consists of two stages. In the first the system resid- 
ual in the input is determined 

l(x, t, O ) =  [(x, t, O) - -~(x ,  t), (3 )  

N 

where ~ ( x , t , O ) =  ~ O~r (x, t )]  i s  t h e  i n p u t  f u n c t i o n  o f  t h e  sy s t em  model  which i s  c a l -  

c u l a t e d  t o  t h e  a c c u r a c y  o f  unknown c o e f f i c i e n t s  o f  0 by a p p l i c a t i o n  o f  t h e  o p e r a t o r s  D v f rom 
(1)  t o  t h e  f u n c t i o n  ~ (x ,  t ) .  I t  i s  assumed t h a t  ~(x ,  t ,  0) i s  a s q u a r e  summable f u n c t i o n  
in  t h e  domain A x A, i . e . ,  an e l e m e n t  o f  t h e  H i l b e r t  sp ace  L2(A x A). 

As i s  known [ 4 ] ,  t h e  p rob lem o f  n u m e r i c a l  d i f f e r e n t i a t i o n  i s  an i n v e r s e  i n c o r r e c t  p r o b -  
lem. C o n s e q u e n t l y ,  t o  d e t e r m i n e  t h e  r e s i d u a l  o f  ~(x ,  t ,  0) r e l a t i v e  t o  t h e  unknown 0 i t  i s  
necessary to use a regularizing algorithm of numerical differentiation. Up to now suffi- 
ciently many such algorithms exist based particularly on spline-smoothing of experimental 
data [5, 6]. The proposed algorithm utilizes the numerical differentiation method from [7], 
which possesses high interference-immunity when there are 30 or more measurement points in 
2-3 intervals of monotoneity of the differentiable function. Moreover, the method possesses 
the advantage that as the quantity of measurement points increases the error of the deriva- 
tives approximates the maximally achievable error at approximately the rate N -I/2, where N 
is the number of measurement points. The maximally achievable error is understood to be 
the error in approximating the derivatives by a given finite set of linearly independent 
functions. 

Therefore, the derivatives D~N(x, t), as well as the functionsq, n[DvN(x, t)], are cal- 
culated in the first stage of the algorithm. 

The problem 

= mintll (x, l, ~)1[ 2 == rain .f ( [l (x, l, ~)]z dxdl ( 4 )  
O O 

A A  
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is solved in the second stage of the algorithm to obtain an estimate of the vector 0, where 
II'l[ denotes the norm in the Hilbert space L2(& x A). As is seen, the residual (3) and the 
minimizable criterion (4) depend explicitly on the parameters being estimated; consequently, 
according to [8] this algorithm belongs to the class of explicit identification algorithms. 
We solve the problem (4) by a projection method [9]. 

We first determine the N-dimensional projection space F N which is a subspace of the 
space Lm(A x A) defined above. Let the system {Wm(x, t)}1N be a basis in F N. To minimize 
the residual s t, O) we project the model input function f(x, t, 0) on F N by using the 
orthogonal projection operator PN, defined in the Hilbert space L2(A • A), i.e., PN: L2(A • 
A) + F N. Then the residual s t, 0) is orthogonal to the subspace F N and thereby to each 
function Wm(x , t), m(l, N), i.e., the scalar products 

( l (x ,  t, 0), W,~(x, l ) ) = f  ~l(x' 1, O) W,,~(x, l)dxdt, re.---l, N (5) 
A A 

in L2(A x A) equal zero. Taking account of (3), we obtain a system of linear algebraic equa- 
tions in the desired vector @: 

N 

~_~ 0,~ < qg.[Dvu(x, 0], W,n(x, t)> = ([(x,  l), W~(x, t )>,  r n : :  1, N. (6)  

If A-----{a,,,J~-{<%~[D~,~ (x,Q],W~(x, t)>} denotes the matrix of the system and b = {be} = 
<f(x, t), Wm(x, t)> the vector of the right side, then the estimate of the vector @ is ob- 
tained in the form 

~ = A-~b; (7)  
it minimizes the functional (4) on the subspace F N. As is seen from (6) and (7), the matrix 
A of the obtained system is perturbed since the quantities D~(x, t) are calculated with 
errors. 

It is shown in [2] that the degree of perturbation of the matrix A depends substantially 
on the kind of basis functions {Wm(x, t)}l N and a suboptimal basis exists in the form of 
piecewise-constant functions possessing the property that the degree of perturbation of the 
matrix A is the least. However, the possibility of selection exists even among piecewise- 
constant functions. For instance, identification results are represented in [2, 3] by using 
the subspace F N generated by a system of zeroth-order B-splines (B~ According to 
[i0], the scalar product operation in the left side of (6) can be interpreted as averaging 
of the function Dye(x, t) by means of the weight function Wm(x, t). The averaging domain 
is determined by the domain in which the functions Wm(x, t) do not equal zero. Moreover, the 
greater the averaging domain, the more, according to [I0], will the random component of the 
quantity Dye(x, t) be suppressed and the degree of perturbation of the elements of the ma- 
trix A diminished thereby. Since the B~ differ from zero only in certain subdo- 
mains of the domain & • A, it should be expected that better averaging will be achieved 
with piecewise-constant functions averaged over the whole domain & • A. Consequently, it 
is proposed to select the system of Walsh functions [Ii] as the piecewise-constant functions. 

Represented below are results of investigating the proposed algorithm on the basis of 
statistical modeling. 

RESULTS OF NUMERICAL MODELING 

A model of a system with distributed parameters 

O~ 02u (x, t) § 0~ ~2l~ (x, t) 0u (x, 0 [ &~ (x, l) ]2 
ot~ ~ Ox~ + o~ ot + o~ Ox ] = f (x, t) (8)  

was investigated. The true values of the parameters are 0~* = 3, 02* = 2, 03* = I, OLd* = 
0.5. It is assumed that the exact solution of the model is u*(x, t) = t 2 in (i + x) + x sin t, 
to which the vector of the true parameters O* and the input function f(x, t) = 2 In (i + x) - 
xsint - t2/(l + x) 2 + t4/(l + x) 2 + sin2t + 2t2sint/(l + x) + 2tln(l + x) +xcost with ap- 
propriate initial and boundary conditions correspond. The measureable quantities Umk' from 
(2) were modeled by using a weakly correlated sequence Emk with standard deviation o~ ob- 
tained from a random number generator. The number of measurement points is M = 40, K = 40. 
The function N(x, t) was obtained by piecewise-linear interpolation of the values of {Umk' }. 
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TABLE i. Dependence of the Accuracy of the Esti- 
mates e@ on the Relative Standard Deviation : 0 for 
Four Jointly Estimatable Parameters @l* = 3, 02* = 
2, O3" = i, and @4" = 0.5 

o ~ %; 

O/ 
g O  ' ' o  

1 

1,4 4,2 6,9 

10 

13,29 

15 

19,5 

The accuracy of the estimates Of the parameters was characterized by the magnitude of 
the relative error s@ and the level of noisiness of the initial data by the relative stan- 
dard deviation o~ ~ where 

lle -- e*11~ q % -  100%,  :~ . . . .  (9) 
lie*lIN ~ [Lu* (x, t)ll 

N 

A A n== 1 

The results of the modeling which are the means of five independent experiments per- 
formed (Table i) show that application of the Walsh functions permits simultaneous estima- 
tion of up to four unknown parameters. Upon estimating a large number of parameters the 
estimates are obtained unstable relative to small deviations from the initial data~ In 
other words, the identification problem becomes incorrect. This is also confirmed in [12]. 
Moreover, by applying the system of B~ instead of the Walsh functions, the selec- 
tion is possible of a more suitable system of basis functions, namely, the Walsh functions 
that permit simultaneous estimation of more parameters for "noisy" data, i.e., an increase 
in the resolution and thereby the interference-immunity and efficiency of the explicit pro- 
jection identification algorithm. 

NOTATION 

L2(A • A), Hilbert space of square-summable functions defined in the space and time in- 
tervals b and A, respectively; x 6 b, space variable; t 6 A, time variable; u*(x, t), u(x, t), 
exact and noisy output functions of the system; f(x, t), generalized input function; {Dr} , 
set of partial differential operators; @, vector of the constant parameters; FN, a finite- 

dimensional subspace of the Hilbert space L2(A • A); ~ n['], given mutually one-to-one non- 
linear functions; ~(x, t, @), residual of the equation; <., ->, scalar product in the space 
L2(A • A); PN, orthogonal projection operator in the subspace FN; {Wm(x , t)}l N, a system of 
basis functions generating FN; {~mk}, a sequence of random variables simulating the measure- 
ment e[ror at points of space {Xm} and time {tk}; sO, relative error estimate of the esti- 
mates @ of the vector @. 
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